Smart Cards

Towards a modern run-time platform

I. Introduction

Thorsten Kramp & Michael Kuyper IBM Zurich Research Laboratory

Copyright © 2004-2007 IBM Corp.

What is a Smart Card?

- Defined by ISO Joint Technical Committee | (JTCI): ISO 7816
 - physical characteristics
 - physical contacts
 - electronic signals
 - transmission protocols
- "Piece of plastic" with an embedded IC
 - contact-based vs. contactless

I. INTRODUCTION

Copyright © 2004-2007 IBM Corp.

Smart "Card" Applications Domains

- Application Domains
 - secure storage
 - payment
 - authentication
 - signing
- Alternative form factors
 - contact-based
 - traditional plastic card
 - as USB token
 - contactless
 - embedded in jewelry (e.g., in a ring)
 - embedded in watches

I. INTRODUCTION

Copyright © 2004-2007 IBM Corp.

3

DEMO

Copyright © 2004-2007 IBM Corp.

Overview

A. Hardware overview

CPUs, memory types, I/O, cryptographic co-processors, random number generators

- B. Communication modes and protocols interaction model, contact-based vs. contact-less
- C. Classification of smart-card operating systems static vs. dynamic, file-system-based vs. object-oriented

5

Copyright © 2004-2007 IBM Corp.

A. Smart Card Chips

- Chip Characteristica:
 - physical:
 - up to 25 mm² (typical 9-14 mm²)
 - power:
 - external power only (no batteries)
 - I-5V (typical: I.8, 3V, 5V)
 - clock:
 - external clock only (internal clock multiplier)
 - clock-less design (a.k.a. "free running")
 - no "wall clock", only timers
 - manufacturers
 - Philips, Infineon, Atmel, ARM, STmicro, Samsung, Sharp, MIPS

A. Smart Card Chips: CPU

- 8-32 bits
 - 8 bits (still very common)
 - smaller code size
 - small address range w/o instruction set extensions (cf. memory banking)
 - usually w/ extensions for 16 bits memory addressing and access
 - cheap (many chips per wafer)
 - 16-32 bits (upcoming)
 - large(r) code size
 - large(r) linear address space
 - increasingly expensive (fewer chips per wafer)

Crypto-Co Des/Aes, rsa/ecc

I/O up to 848 Kbit/s

A. Smart Card Chips: CPU

- CISC vs. RISC
 - CISC (complex instruction set computer)
 - complex opcodes (many cycles)
 - more complex CPU design
 - smaller code
 - comparatively easy to hand-optimize (less error-prone compilers)
 - RISC (reduced instruction set computer)
 - simple opcodes (usually only one cycle)
 - simpler CPU design
 - larger code
 - comparatively difficult to hand-optimize (better compiler logic for optimization)

CPU 8-32 bits, CISC/RISC Crypto-Co DESIAES, RSA/ECC 1/O up to 848 Kbit/s RNG

I. INTRODUCTION

Copyright © 2004-2007 IBM Corp.

A. Smart Card Chips: Crypto Co-processor

- Symmetric cryptography
 - shared key used for both encryption and decryption
 - fully hardware-implemented
 - DES (Data Encryption Standard)
 - key length: 8-24 bytes (DES, 2DES, 3DES)
 - block length: 8 bytes
 - modes: encryption/decryption, MAC
 - AES (Advanced Encryption Standard)
 - key length: 128-256 bits
 - block length: 16, 24, 32 bytes
 - modes: encryption/decryption, MAC

9

A. Smart Card Chips: Crypto Co-processor

Public-key cryptography

- public/private key pair
 - public key: encryption, signature verification
 - private key: decryption, signature generation
- partially hardware-implemented
 - support for large-number modular arithmetic
 - support for modular polynomial arithmetic
 - often w/ extra crypto RAM
- RSA (Rivest, Shamir, Adelmann)
 - key length: 256-4096 bits on-card
- ECC (elliptic curve cryptography)
 - key length: 112-576 bits on-card

I. INTRODUCTION

Copyright © 2004-2007 IBM Corp.

A. Smart Card Chips: I/O

- Contact-based
 - serial communication
 - via smart-card reader (ISO 7816)
 - 9,6-115 Kbits/sec
 - half duplex
 - USB 1.1 low-speed
 - up to 1,5 Mbits/sec
 - half duplex, full duplex
 - I²C (inter-integrated circuit)
 - up to 100 Kbits/sec
 - half duplex

CPU 8-32 bit, CISC/RISC

П

Crypto-Co DES/AES, RSA/ECC

I/O up to 848 Kbit/s

> RNG true randon

A. Smart Card Chips: RNG

Random number generator must pass statistical tests (e.g., χ^2 or FIPS 140-2) Software random number generator I. some logical CPU states 2. using a crypto algorithm such as DES cyclic ring buffer random bits DES (+)◀ Hardware random number generator ٠ exploits physical characteristics RNG performance varies depending upon how long it ٠ true random takes to build up a sufficient level of entropy

A. Smart Card Chips: Memory

- RAM
 - random-access memory, loses content w/o power
 - scarcest memory resource
 - single cell: $\sim 4 \times$ size of EEPROM
 - read/write latency: ~70ns

A. Smart Card Chips: Memory

- Flash
 - flash electrial erasable read-only memory
 - maintains state even w/o power
 - write latency: $\sim 10 \mu s$
 - read latency: ~70ns
 - limited number of write cycles per cell
 - write operations can only erase bits
 - erase operations in blocks only (e.g., 8 KB or 64 KB)

MML

A. Smart Card Chips: Examples

- Philips SmartMX
 - 8 bits CISC CPU (80C51 derivative w/ extended 24 bits addressing)
 - 1-10 Mhz (up to 40 Mhz internally)
 - communication
 - UART
 - ISO 7816, ISO 14443, USB 1.1
 - crypto co-processors
 - DES, AES
 - 32 bits FameXE crypto co-processor
 - hardware random number generator
 - ROM: 160KB, RAM: 4KB, EEPROM: 72KB

SmartMX 8 bits CISC

DHILIDS

A. Smart Card Chips: Examples

- Infineon SLE88
 - 32 bits RISC CPU
 - I-IO Mhz (up to 66 Mhz internally)
 - communication

UART

- ISO 7816
- crypto co-processors

DES

- crypto co-processor
- hardware random number generator
- ROM: 192-240KB, RAM: 6-8 KB, EEPROM: 72-80 KB

SLE88 32 bits RISC

Infineon

A. Smart Card Chips

Compare to: Apollo 11 Guidance Computer

- 2 Mhz CPU
- 16 bits word length
- 4 KB RAM
- 72 KB ROM

www.apollosaturn.com/gnc.htm
www.digitalmist.com/plethorama/apollogc.htm

I. INTRODUCTION

Copyright © 2004-2007 IBM Corp.

23

DEMO

A. Smart Card Chips: Tamper Resistance

- Run-time mechanisms
 - randomized clock or "free running"
 - unified power consumption
 - memory encryption (EEPROM/RAM)
 - bus randomization
 - voltage, clock, temperature sensors
- Static mechanisms
 - shielding against micro-probing
 - light sensors
 - randomized chip layout

I. INTRODUCTION

Copyright © 2004-2007 IBM Corp.