
Copyright © 2004-2007 IBM Corp.

Thorsten Kramp & Michael Kuyper
IBM Zurich Research Laboratory

Smart Cards
Towards a modern run-time platform

2. Software & Its Interplay

Copyright © 2004-2007 IBM Corp.

“Those parts of the system that you can hit with a
hammer (not advised) are called hardware;

those program instructions that you can only curse at
are called software.”

Anonymous

2. SOFTWARE & ITS INTERPLAY 3Copyright © 2004-2007 IBM Corp.

Overview

A. Basic machinery

execution model, byte code vs. native code,
language aspects

B. Memory management

basic schemes, memory types: transient vs. persistent,
garbage collection

C. Atomicity and transactions

basic schemes, system-level vs. user-level transactions

D. OO programming w/ resource constraints

applet design, RMI, size/performance optimizations

2. SOFTWARE & ITS INTERPLAY 4Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: VM

• Virtual machine

– an abstract machine w/ its own instruction set, registers, memory model …

– programs written against an VM instruction set become independent from ‘real
hardware’ (a.k.a. “write once, run everywhere”)

SP

StackHeap

R1
R2
…
Rn

PC
SW
Accu

Instr. Set

add, sub, inc,
dec, jmp,

jnz, call, ret,
…

VM

2. SOFTWARE & ITS INTERPLAY 5Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: VM

• Virtual machine

– an abstract machine w/ its own instruction set, registers, memory model …

– programs written against an VM instruction set become independent from ‘real
hardware’ (a.k.a. “write once, run everywhere”)

• JavaCard VM

– interprets Java ‘byte code’

– subset of the Java desktop VM

hardware

JCVM

JCRE Global Platform

2. SOFTWARE & ITS INTERPLAY 6Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: VM

• Virtual machine

– an abstract machine w/ its own instruction set, registers, memory model &c.

– programs written against an VM instruction set become independent from ‘real
hardware’ (a.k.a. “write once, run everywhere”)

• JavaCard VM

– interprets Java ‘byte code’

– subset of the Java desktop VM

Supported Java features

1. small primitive data types: boolean, byte, short
2. one-dimensional arrays
3. packages, classes, interfaces, and exceptions
4. object-oriented features: inheritance, virtual methods,

overloading and dynamic object creation,
5. access scope, and binding rules
6. garbage collection (since JC 2.2)
7. optional: int

2. SOFTWARE & ITS INTERPLAY 7Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: VM

• Virtual machine

– an abstract machine w/ its own instruction set, registers, memory model &c.

– programs written against an VM instruction set become independent from ‘real
hardware’ (a.k.a. “write once, run everywhere”)

• JavaCard VM

– interprets Java ‘byte code’

– subset of the Java desktop VM

Unsupported Java features

1. large primitive data types: long, double, float
2. characters and strings
3. multi-dimensional arrays
4. dynamic class loading
5. security manager
6. finalization (and garbage collection prior to JC 2.2)
7. object serialization and cloning
8. threads

2. SOFTWARE & ITS INTERPLAY 8Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: JCRE

• Run-time environment (JCRE)

– life time

• initialized at card initialization time (only once)

• after each reset, JCRE enters “receive-process-reply” loop

• applets and persistent data are preserved over resets

– responsible for:

• card resource management

• network communication

• applet execution

• system and applet security

– defines the JavaCard API

hardware

JCVM

JCRE Global Platform

2. SOFTWARE & ITS INTERPLAY 9Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: JCRE

• Run-time environment (JCRE)

– life time

• initialized at card initialization time (only once)

• after each reset, JCRE enters “receive-process-reply” loop

• applets and persistent data are preserved over resets

– responsible for:

• card resource management

• network communication

• applet execution

• system and applet security

– defines the JavaCard API

Additional JavaCard features

1. persistent and transient objects; persistent is default
[discussed in 2.B]

2. atomic operations and transactions
[disucssed in 2.C]

3. applet firewall and sharing mechanisms
[discussed in 3.A]

2. SOFTWARE & ITS INTERPLAY 10Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: JCRE

• Run-time environment (JCRE)

– life time

• initialized at card initialization time (only once)

• after each reset, JCRE enters “receive-process-reply” loop

• applets and persistent data are preserved over resets

– responsible for:

• card resource management

• network communication

• applet execution

• system and applet security

– defines the JavaCard API

API packages overview

java.lang (strict subset of Java java.lang)
e.g., Object, Throwable

javacard.framework (core functionality)
e.g., Applet, APDU, JCSystem

javacard.rmi(remote method invocation)
e.g., Remote [JC 2.2]

javacard.framework.service (service components)
e.g., RMIService, SecurityService [JC 2.2]

javacard.security (crypto functions)
e.g., Key, Signature, MessageDigest

javacardx.crypto (US export-controlled crypto)
e.g., Cipher

2. SOFTWARE & ITS INTERPLAY 11Copyright © 2004-2007 IBM Corp.

javac

A. Basic Machinery: Off- & On-Card

• From the source onto the card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class CAP

javac

standard Java compiler
1. checks for language violations (i.e., well-formed source)
2. generates standard Java byte code
3. performs basic optimizations

javac converter

loader

+ linker

export

2. SOFTWARE & ITS INTERPLAY 12Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

converter

performs “class-loading time” operations such as:
1. verifies the load images of the Java class files
2. checks for language subset violations
3. initializes static variables
4. resolves symbolic references into a more compact form
5. performs additional optimizations at the byte-code level
6. allocates storage and creates VM data structures to

represent classes

CAPjavac converter

loader

+ linker

export

2. SOFTWARE & ITS INTERPLAY 13Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

CAP Converted APplet
executable binary class representations;
optimized for small memory footprint;
only one package

export
produced and consumed by the converter
for verification and linking
(similar to C header files)

2. SOFTWARE & ITS INTERPLAY 14Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

CAP file format

JAR file w/ components: component {

 u1 tag;

 u2 size;

 u1 info[];

}

1. header: general information about the CAP file and its
package (e.g., CAP format version, package AID, int).

2. directory: lists the size of each CAP file component;
optional components have size 0.

3. applet: [optional] one entry for each applet in this
package describing, for instance, the applet AID.

4. import: lists the set of packages imported by classes
in this package.

CAP Converted APplet
executable binary class representations;
optimized for small memory footprint;
only one package

export
produced and consumed by the converter
for verification and linking
(similar to C header files)

2. SOFTWARE & ITS INTERPLAY 15Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

CAP file format (cont’d)

5. constant pool: contains an entry for each of the
classes, methods, and fields referenced by elements
in the method component (i.e., it references elements
in the class, method, and static field components).

6. class: describes each of the classes and interfaces
defined in this package; contains access information only
as required for execution, not verification.

7. method: describes each of the methods defined in this
package excluding clinit and interface declarations
(abstract methods of classes are included), as well as
the exceptions associated with each method.

8. static field: contains all information to create and
initialize the static field image of this package; primitive
final static fields are not included.

CAP Converted APplet
executable binary class representations;
optimized for small memory footprint;
only one package

export
produced and consumed by the converter
for verification and linking
(similar to C header files)

2. SOFTWARE & ITS INTERPLAY 16Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

CAP file format (cont’d)

9. reference location: lists of offsets into the method
component to items containing indices into the
constant pool component.

10. export: [optional] lists all static elements in this
package that may be imported by classes in other
packages; no instance fields or virtual methods.

11. descriptor: provides information to parse and verify
all elements of the CAP file; references elements in
the contanst pool, class, method, and static field
components.

12. debug: [optional] contains all meta-data for
debugging this package.

[Virtual Machine Specification, JavaCard Platform 2.2.1]

CAP Converted APplet
executable binary class representations;
optimized for small memory footprint;
only one package

export
produced and consumed by the converter
for verification and linking
(similar to C header files)

2. SOFTWARE & ITS INTERPLAY 17Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

CAP Converted APplet
executable binary class representations;
optimized for small memory footprint;
only one package

export
produced and consumed by the converter
for verification and linking
(similar to C header files)

Export file format

 exportfile {

u4 magic;

u1 minor_version;

u1 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count];

u2 this_package;

u1 export_class_count;

class_info classes[export_class_count];

 }

1. name: last portion of the package name + .exp
(e.g., framework.exp)

2. version: different major version number indicates
fundamental incompatibility change

2. SOFTWARE & ITS INTERPLAY 18Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

CAP Converted APplet
executable binary class representations;
optimized for small memory footprint;
only one package

export
produced and consumed by the converter
for verification and linking
(similar to C header files)

Export file format

3. constant pool: table of variable-length structures
representing string constants, class names, field names,
and other constants referred to within the export file.

4. this package: index to the constant pool element
describing the package defined by this export file.

5. classes: table of variable-length structures describing
publicly accessible classes or interfaces declared in
the packaged described by this export file.

Note: Classes and interfaces represented in an export file
include all public elements defined within their respective
hierarchies (i.e., all superclasses, superinterfaces, and
virtual methods are explicitly listed).

[Virtual Machine Specification, JavaCard Platform 2.2.1]

2. SOFTWARE & ITS INTERPLAY 19Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet or
shared lib

.java
.jar

.class

• From the source onto the card

loader/linker

assembles a CAP file into an executable applet or a
linkable shared library:
1. resolves references to undefined symbols
2. initializes any static data
3. creates an on-card memory image of the package code
4. adds the package to the package list

Not part of the JavaCard specification!

CAPjavac converter

loader

+ linker

export

2. SOFTWARE & ITS INTERPLAY 20Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

JCVM

subset of the Java VM
1. stack machine
2. executes Java byte-code subset
3. stack frame: local variables +

operand stack +
context

(each cell is 16 bits)

CAPjavac converter

loader

+ linker

export

2. SOFTWARE & ITS INTERPLAY 21Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

Stack machine

No registers to hold intermediate values but uses the
stack for storage.

1. small instruction set
2. allows implementation on architectures with few

or irregular general purpose registers
3. allows code optimizations at run time

(e.g., by just-in-time compilers)

local variable stack

execution env.

operand stack

vars

frame

optop

JCVM

subset of the Java VM
1. stack machine
2. executes Java byte-code subset
3. stack frame: local variables +

operand stack +
context

(each cell is 16 bits)

local variable stack

array of words accessed via indices;
method parameters and local variables;
bytes, chars converted to shorts;
ints use two adjacent slots

2. SOFTWARE & ITS INTERPLAY 22Copyright © 2004-2007 IBM Corp.

JCVM

subset of the Java VM
1. stack machine
2. executes Java byte-code subset
3. stack frame: local variables +

operand stack +
context

(each cell is 16 bits)

A. Basic Machinery: Off- & On-Card

hardware

JCVM

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

Stack machine

No registers to hold intermediate values but uses the
stack for storage.

1. small instruction set
2. allows implementation on architectures with few

or irregular general purpose registers
3. allows code optimizations at run time

(e.g., by just-in-time compilers)

local variable stack

execution env.

operand stack

execution environment

constant pool resolution;
normal method return;
exception dispatch;
impl.-dependent information

vars

frame

optop

2. SOFTWARE & ITS INTERPLAY 23Copyright © 2004-2007 IBM Corp.

JCVM

subset of the Java VM
1. stack machine
2. executes Java byte-code subset
3. stack frame: local variables +

operand stack +
context

(each cell is 16 bits)

A. Basic Machinery: Off- & On-Card

hardware

JCVM

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

Stack machine

No registers to hold intermediate values but uses the
stack for storage.

1. small instruction set
2. allows implementation on architectures with few

or irregular general purpose registers
3. allows code optimizations at run time

(e.g., by just-in-time compilers)

local variable stack

execution env.

operand stack

operand stack

array of words accessed by push/pop
work space for operations

example: sadd
 1. pop two shorts s1, s2
 2. add s1 and s2
 3. push result

m
ay overlap

vars

frame

optop

2. SOFTWARE & ITS INTERPLAY 24Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

JCVM

subset of the Java VM
1. stack machine
2. executes Java byte-code subset
3. stack frame: local variables +

operand stack +
context

(each cell is 16 bits)

Supported bytes codes:

nop aaload aastore aconst_null

aload aload_<n> anewarray areturn

arraylength astore astore_<n> athrow

baload bastore bspush dup

dup_x dup2 goto goto_w

new newarray pop pop2

jsr ret return sreturn

sload sload_<n> sstore sstore<n>

saload sastore sconst_<s> sspush

smul sdiv sinc sinc_w

s2b sneg sor srem

sadd ssub sand swap_x

sshl sshr sushr sxor

getfield_<t>_this getfield_<t> getfield_<t>_w getstatic_<t>

putfield_<t>_this putfield_<t> putfield_<t>_w putstatic_<t>

slookupswitch stableswitch

invokeinterface invokespecial invokestatic invokevirtual

if_acmp<cond> if_acmp<cond>_w if<cond> if<cond>_w

if_scmp<cond> if_scmp<cond>_w ifnull ifnull_w

ifnonnull ifnonnull_w instanceof

[Virtual Machine Specification, JavaCard Platform 2.2.1]

2. SOFTWARE & ITS INTERPLAY 25Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

JCVM

subset of the Java VM
1. stack machine
2. executes Java byte-code subset
3. stack frame: local variables +

operand stack +
context

(each cell is 16 bits)

Unsupported bytes codes:

lconst_<l> fconst_<f> dconst_<d> ldc2_w2

lload fload dload lload_<n>

fload_<n> dload_<n> laload faload

daload caload lstore fstore

dstore lstore_<n> fstore_<n> dstore_<n>

lastore fastore dastore castore

ladd fadd dadd lsub

fsub dsub lmul fmul

dmul ldiv fdiv ddiv

lrem frem drem lneg

fneg dneg lshl lshr

lushr land lor lxor

i2l i2f i2d l2i

l2f l2d f2i f2d

d2i d2l d2f i2c

lcmp fcmpl fcmpg dcmpl

dcmpg lreturn freturn dreturn

goto_w jsr_w multianewarray

monitorexit monitorenter

[Virtual Machine Specification, JavaCard Platform 2.2.1]

2. SOFTWARE & ITS INTERPLAY 26Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Off- & On-Card

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class

• From the source onto the card

CAPjavac converter

loader

+ linker

export

JCVM

subset of the Java VM
1. stack machine
2. executes Java byte-code subset
3. stack frame: local variables +

operand stack +
context

(each cell is 16 bits)

Optional bytes codes (int support)

iadd isub imul idiv

irem iinc iinc_w ireturn

iand ineg ior ixor

icmp ishl ishr iushr

i2b i2s s2i

iload iload_<n> istore istore_<n>

iaload iastore iconst_<i>

sipush bipush iipush

getfield_i_this getfield_i getfield_i_w getstatic_i

putfield_i_this putfield_i putfield_i_w putstatic_i

ilookupswitch itableswitch

[Virtual Machine Specification, JavaCard Platform 2.2.1]

Copyright © 2004-2007 IBM Corp.

DEMO

2. SOFTWARE & ITS INTERPLAY 28Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Applet

• Definition

– a smart card application written in Java uniquely identified by an AID

– instance of a class that extends javacard.framework.Applet

– any number of applets may be installed [state: selectable]

– only one applet is running at a time [state: active]

• Applet life cycle

– applet’s life starts when it is registered with the JCRE [state: selectable]

– must be explicitly selected by the host [state: active]

– purely reactive behaviour

selectable active

create

delete

select

deselect

p
rocess

2. SOFTWARE & ITS INTERPLAY 29Copyright © 2004-2007 IBM Corp.

public static void install(…)

• creates an instance of the applet subclass
• should perform any necessary initializations and must call one of the register methods
• installation is successful if the register methods does not throw an exception
• after sucessful installation the applet is selectable

A. Basic Machinery: Applet Class

public abstract class Applet {

public static void install(byte[] bArray, short bOffset, byte bLength);

protected final void register() ;
protected final void register(byte bArray, short bOffset, byte bLength);

public boolean select();

public void deselect();

protected final boolean selectingApplet();

public abstract void process(APDU apdu);

...

};

2. SOFTWARE & ITS INTERPLAY 30Copyright © 2004-2007 IBM Corp.

public static void install(…)

• creates an instance of the applet subclass
• should perform any necessary initializations and must call one of the register methods
• installation is successful if the register methods does not throw an exception
• after sucessful installation the applet is selectable

A. Basic Machinery: Applet Class

public abstract class Applet {

public static void install(byte[] bArray, short bOffset, byte bLength);

protected final void register() ;
protected final void register(byte bArray, short bOffset, byte bLength);

public boolean select();

public void deselect();

protected final boolean selectingApplet();

public abstract void process(APDU apdu);

...

};

bArray[bOffset] = length(Li) of instance AID

bArray[bOffset+1..bOffset+Li] = instance AID bytes (5-16 bytes)

bArray[bOffset+Li+1]= length(Lc) of control info

bArray[bOffset+Li+2..bOffset+Li+Lc+1] = control info

bArray[bOffset+Li+Lc+2] = length(La) of applet data

bArray[bOffset+Li+Lc+2..bOffset+Li+Lc+La+1] = applet data

2. SOFTWARE & ITS INTERPLAY 31Copyright © 2004-2007 IBM Corp.

protected final void register(…)

• registers the new applet instance with the JCRE
• uses the AID specified in the CAP file (only one applet instance possible), or…
• …the AID passed in bArray (multiple instances possible)

A. Basic Machinery: Applet Class

public abstract class Applet {

public static void install(byte[] bArray, short bOffset, byte bLength);

protected final void register() ;
protected final void register(byte bArray, short bOffset, byte bLength);

public boolean select();

public void deselect();

protected final boolean selectingApplet();

public abstract void process(APDU apdu);

...

};

2. SOFTWARE & ITS INTERPLAY 32Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Applet Class

public abstract class Applet {

public static void install(byte[] bArray, short bOffset, byte bLength);

protected final void register() ;
protected final void register(byte bArray, short bOffset, byte bLength);

public boolean select();

public void deselect();

protected final boolean selectingApplet();

public abstract void process(APDU apdu);

...

};

public class myApplet extends Applet {

public static void install(byte[] bArray, short bOffset, byte bLength) {

 (new myApplet()).register(bArray,(short)(bOffset+1),bArray[bOffset]);

}

protected myApplet() { // constructor

 ...

}

};

2. SOFTWARE & ITS INTERPLAY 33Copyright © 2004-2007 IBM Corp.

public boolean select()

• called by the JCRE to inform the applet that it has been selected
• default applet is selected automatically on card reset

public boolean deselect()

• called by the JCRE to inform the applet that another (or the same) applet will be selected

A. Basic Machinery: Applet Class

public abstract class Applet {

public static void install(byte[] bArray, short bOffset, byte bLength);

protected final void register() ;
protected final void register(byte bArray, short bOffset, byte bLength);

public boolean select();

public void deselect();

protected final boolean selectingApplet();

public abstract void process(APDU apdu);

...

};

2. SOFTWARE & ITS INTERPLAY 34Copyright © 2004-2007 IBM Corp.

public abstract void process(...)

• called by the JCRE to process an incoming APDU command
• upon normal return the JCRE sends the ISO 7816 defined success code 0x9000 in the APDU response

protected native final boolean selectingApplet()

• used by the process method to distinguish between applet selects from other SELECT APDU commands

A. Basic Machinery: Applet Class

public abstract class Applet {

public static void install(byte[] bArray, short bOffset, byte bLength);

protected final void register() ;
protected final void register(byte bArray, short bOffset, byte bLength);

public boolean select();

public void deselect();

protected final boolean selectingApplet();

public abstract void process(APDU apdu);

...

};

2. SOFTWARE & ITS INTERPLAY 35Copyright © 2004-2007 IBM Corp.

public class myApplet extends Applet {

 public void process(APDU apdu) {
 if (selectingApplet()) {

 ... // additional select processing

 return;

 }

 ... // process APDU

}

};

A. Basic Machinery: Applet Class

public abstract class Applet {

public static void install(byte[] bArray, short bOffset, byte bLength);

protected final void register() ;
protected final void register(byte bArray, short bOffset, byte bLength);

public boolean select();

public void deselect();

protected final boolean selectingApplet();

public abstract void process(APDU apdu);

...

};

2. SOFTWARE & ITS INTERPLAY 36Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Logical Channels

• logical channels allow up to four sessions into the smart card

• only logical channel 0 is active on card reset

• specified in ISO 7816-4, introduced in JavaCard 2.2

• one default applet per logical channel

• multi-selectable applets

– implement javacard.framework.MultiSelectable

– all or none applets within a package shall be multi-selectable

JCRE

applet 1 applet 2 applet 3

2. SOFTWARE & ITS INTERPLAY 37Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: Interface Multiselectable

public abstract class Applet {

public static void install(byte[] bArray, short bOffset, byte bLength);

protected final void register() ;
protected final void register(byte bArray, short bOffset, byte bLength);

public boolean select();

public void deselect();

protected final boolean selectingApplet();

public abstract void process(APDU apdu);

...

};

public interface MultiSelectable {

 public void select(boolean appInstAlreadyActive);
public void deselect(boolean appInstStillActive);

};

2. SOFTWARE & ITS INTERPLAY 38Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: javacard.framework

• javacard.framework.AID

– encapsulates the Application IDentifier associated with an applet

– created by the JCRE only

• javacard.framework.APDU

– encapsulates an Application Protocol Data Unit according to ISO 7816

– singleton object owned by the JCRE

– zeroed out by the JCRE before each new message received

• javacard.framework.Util

– common static utility functions

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management [2.B],
atomic transaction management [2.C], inter-applet object sharing [3.A]

2. SOFTWARE & ITS INTERPLAY 39Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: javacard.framework

• javacard.framework.AID

– encapsulates the Application IDentifier associated with an applet

– created by the JCRE only

• javacard.framework.APDU

– encapsulates an Application Protocol Data Unit according to ISO 7816

– singleton object owned by the JCRE

– zeroed out by the JCRE before each new message received

• javacard.framework.Util

– common static utility functions

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management [2.B],
atomic transaction management [2.C], inter-applet object sharing [3.A]

public final class AID {

public AID(byte[] bArray, short offset, byte length);

public byte getBytes(byte[] dest, short offset);

public byte getPartialBytes(short aidOffset,

byte[] dest, short oOffset, short oLength);

boolean equals(byte[] bArray, short offset,

byte length);

boolean partialEquals(byte[] bArray, short offset,

byte length);

boolean RIDEquals(AID otherAID);

...

};

2. SOFTWARE & ITS INTERPLAY 40Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: javacard.framework

• javacard.framework.AID

– encapsulates the Application IDentifier associated with an applet

– created by the JCRE only

• javacard.framework.APDU

– encapsulates an Application Protocol Data Unit according to ISO 7816

– singleton object owned by the JCRE

– zeroed out by the JCRE before each new message received

• javacard.framework.Util

– common static utility functions

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management [2.B],
atomic transaction management [2.C], inter-applet object sharing [3.A]

public final class APDU {

public byte[] getBuffer();

public static byte getProtocol();

public short setOutgoing();

public short setOutgoingNoChaining();

public short setOutgoingLength(short len);

public short receiveBytes(short offset);

public short setIncomingAndReceive();

public void sendBytes(short offset, short length);

public void sendBytesLong(byte[] data, short offset,

short length);

public void setOutgoingAndSend(short offset,

short length);

public static APDU getCurrentAPDU();

public static byte[] getCurrentAPDUBuffer();

...

};

2. SOFTWARE & ITS INTERPLAY 41Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: javacard.framework

• javacard.framework.AID

– encapsulates the Application IDentifier associated with an applet

– created by the JCRE only

• javacard.framework.APDU

– encapsulates an Application Protocol Data Unit according to ISO 7816

– singleton object owned by the JCRE

– zeroed out by the JCRE before each new message received

• javacard.framework.Util

– common static utility functions

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management [2.B],
atomic transaction management [2.C], inter-applet object sharing [3.A]

public class Util {

public static short arrayCopy

(byte[] src, short srcOfs,

 byte[] dest, short dstOfs, short length);

public static short arrayFill(byte[] bArray,

short offset, short length, byte value);

public static short arrayCompare

(byte[] src, short srcOfs,

 byte[] dest, short dstOfs, short length);

public static short makeShort(byte b1, byte b2);

public static short getShort(byte[] arr, short ofs);

public static short setShort(byte[] array,

short offset, short value);

...

};

2. SOFTWARE & ITS INTERPLAY 42Copyright © 2004-2007 IBM Corp.

A. Basic Machinery: javacard.framework

• javacard.framework.AID

– encapsulates the Application IDentifier associated with an applet

– created by the JCRE only

• javacard.framework.APDU

– encapsulates an Application Protocol Data Unit according to ISO 7816

– singleton object owned by the JCRE

– zeroed out by the JCRE before each new message received

• javacard.framework.Util

– common static utility functions

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management [2.B],
atomic transaction management [2.C], inter-applet object sharing [3.A]

public final class JCSystem {

public static byte getAssignedChannel();

public static boolean isAppletActive(AID theApplet);

...

};

