Overview

A. Basic machinery

execution model, byte code vs. native code,
language aspects

B. Memory management

basic schemes, memory types: transient vs. persistent,
garbage collection

C. Atomicity and transactions

basic schemes, system-level vs. user-level transactions

D. OO programming w/ resource constraints

applet design, RM|, size/performance optimizations

2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp.

B. Memory: JavaCard Memory Model

* Three kinds of memory
— Transient memory (RAM)

* read/write memory

* |ooses contents in case of power loss

* most expensive memory type
— Persisent memory (EEPROM or Flash)

* read/write memory

* preserves contents in case of power loss

* number of write operations is physically limited

* write/erase is significantly slower than in RAM
— “System memory” (ROM or Flash)

* read-only memory

* preserves contents in case of power loss

* cheapest memory type

2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp.

up to 8 KB

EEPROM,

Flash
up to 96 KB | | MB

ROM
up to 256 KB

B. Memory: JavaCard Object Model

* Java programming rules for objects
— all objects are instances of classes or array types w/ root java.lang.Object

— fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

Persistent objects

— memory and data are preserved Across sessions

Transient objects

— memory is preserved across sessions but data is erased between sessions

JCRE (Temporary) Entry-Point Objects

— objects owned by the JavaCard system which may be called from any context

— references to temporary entry-point objects (e.g, APDU) may not be stored

2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp. 3

B. Memory: JavaCard Object Model

* Java programming rules for objects
— all objects are instances of classes or array types w/ root java.lang.Object

— fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

Persistent objects

Persistent and transient objects in Java:
— memory and data are prese
. in Java, all objects are created in RAM
Transient objects . object (de)serialization records/restores the state and properties
of an object in a stream of bytes

— memory is preserved across * the transient keyword indicates which fields are not
part of an object’s persistent state

JCRE (Temporary) Entry_[JavaCard does support neither (de)serialization nor
— objects owned by the JavaCc the transient keyword

- references to temporary entt

2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp. 4

B. Memory: JavaCard Object Model

* Java programming rules for objects
— all objects are instances of classes or array types w/ root java.lang.Object

— fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

Persistent objects

Persistent JavaCard objects:
— memory and data are prese
created by the new operator

updates to single fields are atomic

can be referenced by fields in a transient objects

fields can reference transient objects

if not referenced by some other object it becomes unreachable

JCRE (Tempo rary) Entry—[and may be garbage collected
— objects owned by the JavaCq

Transient objects

— memory is preserved across

— references to temporary enti

2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp. 5

B. Memory: JavaCard Object Model

* Java programming rules for objects
— all objects are instances of classes or array types w/ root java.lang.Object

— fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

Persistent objects

Transient JavaCard objects:
— memory and data are prese
created by invoking the JavaCard APls

only arrays with primitive types or with references to Object
updates to single fields are not atomic

can be referenced by fields in persistent objects

fields can reference persistent objects

JCRE (Tem p orary) EI’TU")/-I if not referenced by some other object it becomes unreachable

and may be garbage collected

Transient objects

— memory is preserved across

— objects owned by the JavaCd
. two types: CLEAR_ON_RESET, CLEAR ON_DESELECT

— references to temporary ent

2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp. 6

B. Memory: JavaCard Object Model

Transient JavaCard objects:

* Transient objects

CLEAR ON_RESET

created by invoking the JavaCard APls

only arrays with primitive types or with references to Object
updates to single fields are not atomic

can be referenced by fields in persistent objects

fields can reference persistent objects

if not referenced by some other object it becomes unreachable

0 used for maintaining data to be preserved across = and may be garbage collected

applet selections but not across card resets
. on card reset all fields are cleared two types: CLEAR_ON_RESET, CLEAR_ON_DESELECT
2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp.

B. Memory: JavaCard Object Model

Transient JavaCard objects:

* Transient objects .

CLEAR ON_DESELECT

. used for maintaining data NOT to be preserved
across applet selections or card resets
. on applet deselect all fields are cleared

CLEAR_ON_DESELECT implies CLEAR_ON_RESET

created by invoking the JavaCard APls

only arrays with primitive types or with references to Object
updates to single fields are not atomic

can be referenced by fields in persistent objects

fields can reference persistent objects

if not referenced by some other object it becomes unreachable
and may be garbage collected

two types: CLEAR_ON_RESET, CLEAR_ON_DESELECT

2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp.

B. Memory: Organization

e Memory layout: CLEAR_ON_RESET vs. CLEAR ON_DESELECT

—_— -

L | L |
CLEAR_ON_DESELECT CLEAR_ON_RESET

e Multi-selectable

— multi-selected applets from the same package share their COD

pr—h

applet |

2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp.

B. Memory: Garbage Collection

e Traditional: malloc and free

» Reference counting

— each object is associated with a count of how many objects currently use it
— counter is increased and decreased by retain and release, respectively
— if counter reaches O, the object is deleted

» (Garbage collection

— system automatically keeps track of who uses which objects

— periodically reclaims memory of unreferenced objects
— JavaCard

* introduced as optional feature in JavaCard 2.2
* invoked via the JavaCard API

* may be delayed until the next invocation of Applet.process()

2. SOFTWARE & ITS INTERPLAY Copyright © 2004-2007 IBM Corp.

B. Memory: javacard. framework

+ Javacard.framework.JCSystem

— collection of methods to control applet execution, memory management,
atomic transaction management [2.C], inter-applet object sharing [3.A]

2. SOFTWARE & ITS INTERPLAY

Copyright © 2004-2007 IBM Corp.

B. Memory: javacard. framework

+ Javacard.framework.JCSystem

— collection of methods to control applet execution, memory management,

atomic transaction manag

2. SOFTWARE & ITS INTERPLAY

public final class JCSystem {

public static boolean[] makeTransientBooleanArray
(short length, byte event);

public static byte[] makeTransientByteArray
(short length, byte event);

public static short[] makeTransientShortArray
(short length, byte event);

public static Object[] makeTransientObjectArray
(short length, byte event);

public
public

public
public

public
public

}i

static
static

static
static

static
static

byte isTransient(Object theObject);
short getAvailableMemory(byte type);

short getVersion();
AID getAID();

boolean isObjectDeletionSupported();
void requestObjectDeletion();

Copyright © 2004-2007 IBM Corp.

