
2. SOFTWARE & ITS INTERPLAY 1Copyright © 2004-2007 IBM Corp.

Overview

A. Basic machinery

execution model, byte code vs. native code,
language aspects

B. Memory management

basic schemes, memory types: transient vs. persistent,
garbage collection

C. Atomicity and transactions

basic schemes, system-level vs. user-level transactions

D. OO programming w/ resource constraints

applet design, RMI, size/performance optimizations

2. SOFTWARE & ITS INTERPLAY 2Copyright © 2004-2007 IBM Corp.

B. Memory: JavaCard Memory Model

• Three kinds of memory

– Transient memory (RAM)

• read/write memory

• looses contents in case of power loss

• most expensive memory type

– Persisent memory (EEPROM or Flash)

• read/write memory

• preserves contents in case of power loss

• number of write operations is physically limited

• write/erase is significantly slower than in RAM

– “System memory” (ROM or Flash)

• read-only memory

• preserves contents in case of power loss

• cheapest memory type

ROM
up to 256 KB

RAM
up to 8 KB

EEPROM,
Flash

up to 96 KB | 1 MB



2. SOFTWARE & ITS INTERPLAY 3Copyright © 2004-2007 IBM Corp.

B. Memory: JavaCard Object Model

• Java programming rules for objects

– all objects are instances of classes or array types w/ root java.lang.Object

– fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

• Persistent objects

– memory and data are preserved across sessions

• Transient objects

– memory is preserved across sessions but data is erased between sessions

• JCRE (Temporary) Entry-Point Objects

– objects owned by the JavaCard system which may be called from any context

– references to temporary entry-point objects (e.g., APDU) may not be stored

2. SOFTWARE & ITS INTERPLAY 4Copyright © 2004-2007 IBM Corp.

B. Memory: JavaCard Object Model

• Java programming rules for objects

– all objects are instances of classes or array types w/ root java.lang.Object

– fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

• Persistent objects

– memory and data are preserved across sessions

• Transient objects

– memory is preserved across sessions but data is erased between sessions

• JCRE (Temporary) Entry-Point Objects

– objects owned by the JavaCard system which may be called from any context

– references to temporary entry-point objects (e.g., APDU) may not be stored

Persistent and transient objects in Java:

• in Java, all objects are created in RAM
• object (de)serialization records/restores the state and properties

of an object in a stream of bytes
• the transient keyword indicates which fields are not

part of an object’s persistent state

JavaCard does support neither (de)serialization nor
the transient keyword.



2. SOFTWARE & ITS INTERPLAY 5Copyright © 2004-2007 IBM Corp.

B. Memory: JavaCard Object Model

• Java programming rules for objects

– all objects are instances of classes or array types w/ root java.lang.Object

– fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

• Persistent objects

– memory and data are preserved across sessions

• Transient objects

– memory is preserved across sessions but data is erased between sessions

• JCRE (Temporary) Entry-Point Objects

– objects owned by the JavaCard system which may be called from any context

– references to temporary entry-point objects (e.g., APDU) may not be stored

Persistent JavaCard objects:

• created by the new operator
• updates to single fields are atomic
• can be referenced by fields in a transient objects
• fields can reference transient objects
• if not referenced by some other object it becomes unreachable

and may be garbage collected

2. SOFTWARE & ITS INTERPLAY 6Copyright © 2004-2007 IBM Corp.

B. Memory: JavaCard Object Model

• Java programming rules for objects

– all objects are instances of classes or array types w/ root java.lang.Object

– fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

• Persistent objects

– memory and data are preserved across sessions

• Transient objects

– memory is preserved across sessions but data is erased between sessions

• JCRE (Temporary) Entry-Point Objects

– objects owned by the JavaCard system which may be called from any context

– references to temporary entry-point objects (e.g., APDU) may not be stored

Transient JavaCard objects:

• created by invoking the JavaCard APIs
• only arrays with primitive types or with references to Object
• updates to single fields are not atomic
• can be referenced by fields in persistent objects
• fields can reference persistent objects
• if not referenced by some other object it becomes unreachable

and may be garbage collected

• two types: CLEAR_ON_RESET, CLEAR_ON_DESELECT



2. SOFTWARE & ITS INTERPLAY 7Copyright © 2004-2007 IBM Corp.

B. Memory: JavaCard Object Model

• Java programming rules for objects

– all objects are instances of classes or array types w/ root java.lang.Object

– fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

• Persistent objects

– memory and data are preserved across sessions

• Transient objects

– memory is preserved across sessions

– data is erased between sessions

Transient JavaCard objects:

• created by invoking the JavaCard APIs
• only arrays with primitive types or with references to Object
• updates to single fields are not atomic
• can be referenced by fields in persistent objects
• fields can reference persistent objects
• if not referenced by some other object it becomes unreachable

and may be garbage collected

• two types: CLEAR_ON_RESET, CLEAR_ON_DESELECT

CLEAR_ON_RESET

• used for maintaining data to be preserved across
applet selections but not across card resets

• on card reset all fields are cleared

2. SOFTWARE & ITS INTERPLAY 8Copyright © 2004-2007 IBM Corp.

B. Memory: JavaCard Object Model

• Java programming rules for objects

– all objects are instances of classes or array types w/ root java.lang.Object

– fields in a new object or components in a new array are initialized to
their default values 0, null, false unless explicitly specified

• Persistent objects

– memory and data are preserved across sessions

• Transient objects

– memory is preserved across sessions

– data is erased between sessions

Transient JavaCard objects:

• created by invoking the JavaCard APIs
• only arrays with primitive types or with references to Object
• updates to single fields are not atomic
• can be referenced by fields in persistent objects
• fields can reference persistent objects
• if not referenced by some other object it becomes unreachable

and may be garbage collected

• two types: CLEAR_ON_RESET, CLEAR_ON_DESELECT

CLEAR_ON_DESELECT

• used for maintaining data NOT to be preserved
across applet selections or card resets

• on applet deselect all fields are cleared

CLEAR_ON_DESELECT implies CLEAR_ON_RESET



2. SOFTWARE & ITS INTERPLAY 9Copyright © 2004-2007 IBM Corp.

• Memory layout: CLEAR_ON_RESET vs. CLEAR_ON_DESELECT

• Multi-selectable

– multi-selected applets from the same package share their COD

B. Memory: Organization

Cheap B A

CLEAR_ON_RESETCLEAR_ON_DESELECT

applet 1 applet 2 applet 1

2. SOFTWARE & ITS INTERPLAY 10Copyright © 2004-2007 IBM Corp.

B. Memory: Garbage Collection

• Traditional: malloc and free

• Reference counting

– each object is associated with a count of how many objects currently use it

– counter is increased and decreased by retain and release, respectively

– if counter reaches 0, the object is deleted

• Garbage collection

– system automatically keeps track of who uses which objects

– periodically reclaims memory of unreferenced objects

– JavaCard

• introduced as optional feature in JavaCard 2.2

• invoked via the JavaCard API

• may be delayed until the next invocation of Applet.process()



2. SOFTWARE & ITS INTERPLAY 11Copyright © 2004-2007 IBM Corp.

B. Memory: javacard.framework

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management,
atomic transaction management [2.C], inter-applet object sharing [3.A]

2. SOFTWARE & ITS INTERPLAY 12Copyright © 2004-2007 IBM Corp.

B. Memory: javacard.framework

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management,
atomic transaction management [2.C], inter-applet object sharing [3.A]

public final class JCSystem {

public static boolean[] makeTransientBooleanArray

(short length, byte event);

public static byte[] makeTransientByteArray

(short length, byte event);

public static short[] makeTransientShortArray

(short length, byte event);

public static Object[] makeTransientObjectArray

(short length, byte event);

public static byte isTransient(Object theObject);

 public static short getAvailableMemory(byte type);

public static short getVersion();

public static AID getAID();

public static boolean isObjectDeletionSupported();

public static void requestObjectDeletion();

...

};


