
2. SOFTWARE & ITS INTERPLAY 1Copyright © 2004-2007 IBM Corp.

Overview

A. Basic machinery

execution model, byte code vs. native code,
language aspects

B. Memory management

basic schemes, memory types: transient vs. persistent,
garbage collection

C. Atomicity and transactions

basic schemes, system-level vs. user-level transactions

D. OO programming w/ resource constraints

applet design, RMI, size/performance optimizations

2. SOFTWARE & ITS INTERPLAY 2Copyright © 2004-2007 IBM Corp.

C. Transactions: Atomic Operations

• Definition

– an operation executes atomically if when it terminates normally all ist externally
visible effects are made permanent, else it has no effect at all

– in case of a failure during the execution of an atomic operation, the system can
be rolled back to its prior state

• Example: JavaCard

– Primary failure w/ smart cards

• premature removal of the card from the reader, so-called tearing

– Atomic operations in JavaCard

• updating persistent fields of primitive type (i.e., boolean, byte, short, int)

• updating persistent object references

• updating persistent array elements of primitve type or object references



2. SOFTWARE & ITS INTERPLAY 3Copyright © 2004-2007 IBM Corp.

C. Transactions: Composite Atomic Operations

• Definition

– a transaction is an atomic update of several different fields in potentially
different objects (composite atomic operation)

– if the transaction terminates successfully, all ist externally visible effects are
made permanent, else it has no effect at all

– basic API: begin, commit, abort

• Example

short s = 1;

byte b = 0;

Object o = new ...;

++s; ++s; ++b; o = null; s == 3;

b == 1;

o = null;begin commit

++s; ++s; ++b; s == 2;

b == 0;

o = 0x...;begin abort

2. SOFTWARE & ITS INTERPLAY 4Copyright © 2004-2007 IBM Corp.

C. Transactions: Composite Atomic Operations

• Definition

– a transaction is an atomic update of several different fields in potentially
different objects (composite atomic operation)

– if the transaction terminates successfully, all ist externally visible effects are
made permanent, else it has no effect at all

– basic API: begin, commit, abort

• Example

short s = 1;

byte b = 0;

Object o = new ...;

++s; ++s; ++b; o = null; s == 3;

b == 1;

o = null;begin commit

++s; ++s; ++b; s == 2;

b == 0;

o = 0x...;begin abort

ACID

1. Atomicity
either all of the tasks of a transaction are performed
or none of them are

2. Consistency
the system is in a legal state when the transaction
begins and when it ends

3. Isolation
operations within a transaction appear isolated
from all other operations

4. Durability
once successful, the transaction will persists and
not be undone



2. SOFTWARE & ITS INTERPLAY 5Copyright © 2004-2007 IBM Corp.

C. Transactions: Processing & Recovery Strategies

• Transaction processing strategies

– optimistic (write-thru)

• write new value to persistent memory, write ‘initial’ value to log

• discard log on commit, restore values from log on abort

– pessimistic (write-back)

• write new value to log, leave ‘initial’ value untouched (read from log)

• discard log on abort, write log to persistent memory on commit

• Transaction recovery strategies

– backward recovery: return to the last consistent state (cancel transaction)

– forward recovery: redo successful transactions from the transaction log

2. SOFTWARE & ITS INTERPLAY 6Copyright © 2004-2007 IBM Corp.

C. Transactions: Nested Transactions

• Transactions within transactions

• Abort of an inner transaction does not abort its outer transaction

• Abort of an outer transactions aborts ist inner transactions

short s = 1;

byte b = 0;

Object o = new ...;

++s; ++s;

++b;

o = null; s == 4;

b == 1;

o = null;begin commit

begin commit

++b;

abort

++s;

begin



2. SOFTWARE & ITS INTERPLAY 7Copyright © 2004-2007 IBM Corp.

C. Transactions: Nested Transactions

• Transactions within transactions

• Abort of an inner transaction does not abort its outer transaction

• Abort of an outer transactions aborts ist inner transactions

short s = 1;

byte b = 0;

Object o = new ...;

++s; ++s;

++b;

o = null; s == 2;

b == 0;

o == 0x...;begin

begin commit

++b;

abort

++s;

commitbegin

abortabort

2. SOFTWARE & ITS INTERPLAY 8Copyright © 2004-2007 IBM Corp.

C. Transactions: Distributed Transactions

• Transaction spanning more than one (logical) process

• Conceptually similar to nested transactions

– “client” initiates and controls transaction

– each “server” transaction is a nested transaction

• Main problem: Consistency in case of partial failures

– all parties may crash
(or appear to be crashed in case of communication failures)

– each party must maintain sufficient state to recover and
all parties must recover the same way (distributed consensus problem)

Example: chip-based cash card

bank server

ATM

smart card

• check account
• credit/debit

• verify PIN
• credit/debit



2. SOFTWARE & ITS INTERPLAY 9Copyright © 2004-2007 IBM Corp.

C. Transactions: JavaCard

• EEPROM: optimistic w/ backward recovery

• ACD requires work, I is for free (no threads)

• Abort is default when

– voluntarily leaving Applet.process() while a transaction is running

– uncaught exceptions cause Applet.process() to be left

• Aborts do not restore transient fields or local variables

• System-level vs. user-level transactions

– system level: writing primitive data types, installing/deleting an applet,
some API calls

– user level: all transactions explicitly started by an applet

• No nested user-level transactions

2. SOFTWARE & ITS INTERPLAY 10Copyright © 2004-2007 IBM Corp.

C. Transactions: JavaCard

• EEPROM: optimistic w/ backward recovery

• ACD requires work, I is for free (no threads)

• Abort is default when

– voluntarily leaving Applet.process() while a transaction is running

– uncaught exceptions cause Applet.process() to be left

• Aborts do not restore transient fields or local variables

• System-level vs. user-level transactions

– system level: writing primitive data types, installing/deleting an applet,
some API calls

– user level: all transactions explicitly started by an applet

• No nested user-level transactions

Optimistic w/ backward recovery

1. in the wild, aborts happens rarely so optimize for
successful transactions

2. reads happen far more often than writes
(optimistic has faster reads)

3. with optimistic, the fields of objects allocated within
a transaction a never logged

4. writing the log to persistent memory would be a
transaction by itself

Note: Flash basically requires some log-based memory
architecture and, as such, transactions require much less
additional effort.



2. SOFTWARE & ITS INTERPLAY 11Copyright © 2004-2007 IBM Corp.

C. Transactions: javacard.framework

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management,
atomic transaction management, inter-applet object sharing [3.A]

• javacard.framework.Util

– common static utility functions

2. SOFTWARE & ITS INTERPLAY 12Copyright © 2004-2007 IBM Corp.

C. Transactions: javacard.framework

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management,
atomic transaction management, inter-applet object sharing [3.A]

• javacard.framework.Util

– common static utility functions

public final class JCSystem {

public static void beginTransaction();

public static void commitTransaction();

public static void abortTransaction();

public static byte getTransactionDepth();

public static short getMaxCommitCapacity();

public static short getUnusedCommitCapacity();

...

};



2. SOFTWARE & ITS INTERPLAY 13Copyright © 2004-2007 IBM Corp.

C. Transactions: javacard.framework

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management,
atomic transaction management, inter-applet object sharing [3.A]

• javacard.framework.Util

– common static utility functions

public class Util {

public static short arrayCopy

(byte[] src, short srcOfs,

 byte[] dest, short dstOfs, short length);

public static short arrayCopyNonAtomic

(byte[] src, short srcOfs,

 byte[] dest, short dstOfs, short length);

public static short arrayFill(byte[] bArray,

short offset, short length, byte value);

public static short arrayFillNonAtomic

(byte[] bArray, short offset,

short length, byte value);

...

};

Copyright © 2004-2007 IBM Corp.

DEMO



2. SOFTWARE & ITS INTERPLAY 15Copyright © 2004-2007 IBM Corp.

C. Transactions: Sample

byte[] key_buffer = JCSystem.makeTransientByteArray(KEY_LENGTH,JCSystem.CLEAR_ON_RESET);

Object global_ref = new ClassA(); // persistent field

JCSystem.beginTransaction();

Util.arrayCopy(src,src_off,key_buffer,0,KEY_LENGTH);

Util.arrayCopyNonAtomic(src,src_off,key_buffer,0,KEY_LENGTH);

for (byte i = 0; i < KEY_LENGTH; ++i) key_buffer[i] = 0;

byte a_local = 1;

global_ref = new ClassB();

JCSystem.abortTransaction(); // only global_ref is restored

...

JCSystem.beginTransaction();

global_ref = JCSystem.makeTransientObjectArray(LENGTH,JCSystem.CLEAR_ON_DESELECT);

Object local_ref = new ClassC();

if (!condition) JCSystem.abortTransaction(); // global_ref is restored

else JCSystem.commitTransaction();

return local_ref; // potential dangling pointer, JCRE sets local_ref to null

[Chen. Java Card Technology for Smart Cards. Addison Wesley, 2000, pp. 62-63]


