
Copyright © 2004-2007 IBM Corp.

Thorsten Kramp & Michael Kuyper
IBM Zurich Research Laboratory

Smart Cards
Towards a modern run-time platform

3. Security & Cryptography

3. SECURITY & CRYPTOGRAPHY 2Copyright © 2004-2007 IBM Corp.

Security vs. Cryptography

• Cryptography

– science of information security (greek: kryptos, meaning ‘hidden’)

encryption/decryption, secure hashes, digital signatures, true randomness

– cryptology vs. cryptanalysis

– goals: confidentiality, integrity, authentication, non-repudiation

3. SECURITY & CRYPTOGRAPHY 3Copyright © 2004-2007 IBM Corp.

Security vs. Cryptography

• Computer security

– definition

• “effort to create a secure computing
platform, designed so that agents
(users and programs) cannot perform
actions that they are not allowed to
perform, but can perform the actions
they are allowed to” [wikipedia]

– techniques

• cryptography

• chain of trust

3. SECURITY & CRYPTOGRAPHY 4Copyright © 2004-2007 IBM Corp.

Overview

A. Execution model

language features, sandbox, applet firewall
(object isolation and sharing)

B. On-card Cryptography

algorithms and protocols, good cryptographic practice

C. Protecting against attacks

SPA/DPA, timing attacks, fault injection

3. SECURITY & CRYPTOGRAPHY 5Copyright © 2004-2007 IBM Corp.

A. Execution: Language Security

• Java Language Features

– strongly typed: no illegal data conversions
(static checks at compile time, dynamic checks at run time)

– enforced bound checks on array access

– no pointer arithmetic, no way to forge pointers

– no uninitialized variables
(default values, compile-time checks)

– strictly controlled access levels of fields, methods, and classes
(package, public, protected, private)

3. SECURITY & CRYPTOGRAPHY 6Copyright © 2004-2007 IBM Corp.

A. Execution: Platform Security

• Security Chain

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class CAPjavac converter

loader
+ linker

export

3. SECURITY & CRYPTOGRAPHY 7Copyright © 2004-2007 IBM Corp.

A. Execution: Platform Security

• Security Chain

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class CAPjavac converter

loader
+ linker

export

Compile-Time Checking

1. references to methods and variables are type-checked
2. access restrictions are enforced

(package, public, protected, private)
3. no uninitialized variables
4. no casts from int or short to references or vice versa
5. no arbitrary objects casts

(casts to subclasses require run-time checks)

3. SECURITY & CRYPTOGRAPHY 8Copyright © 2004-2007 IBM Corp.

A. Execution: Platform Security

• Security Chain

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class CAPjavac converter

loader
+ linker

export

Class File Verification

1. no memory mgmt violations, no stack under-/overflows
2. access restrictions are enforced
3. methods are called with appropriate arguments
4. field are modified with values of appropriate type
5. objects are accessed as what they are
6. no pointers are forged
7. no illegal data conversions

Subset Checking

1. no unsupported data types
(e.g., int, float, double)

2. no unsupported language features
(e.g., threads, multi-dimensional arrays)

3. operations are within limited ranges
(e.g., no more than 255 classes/interfaces,
 arrays have maximum 32767 fields)

3. SECURITY & CRYPTOGRAPHY 9Copyright © 2004-2007 IBM Corp.

A. Execution: Platform Security

• Security Chain

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class CAPjavac converter

loader
+ linker

export

Class File Verification == CAP File Verification

1. no memory mgmt violations, no stack under-/overflows
2. access restrictions are enforced
3. methods are called with appropriate arguments
4. field are modified with values of appropriate type
5. objects are accessed as what they are
6. no pointers are forged
7. no illegal data conversions

CAP File Integrity Checking

1. package and applets have valid AIDs
2. all applets implement an install method with

correct signature
3. interfaces appear ahead of classes and

superclasses ahead of subclasses
4. if int is used, the int flag must be set

Such an on-card verifier is optional!

on-card
verifier

3. SECURITY & CRYPTOGRAPHY 10Copyright © 2004-2007 IBM Corp.

A. Execution: Platform Security

• Security Chain

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class CAPjavac converter

loader
+ linker

export

Installation Checking

1. installation data corruption or tampering
2. incompatibility between CAP file and on-card resources
3. internal and external references are valid
4. insufficient resources or other errors during install

If the CAP file is digitally signed, the loader/linker verifies
the signature prior linking and installing!

3. SECURITY & CRYPTOGRAPHY 11Copyright © 2004-2007 IBM Corp.

A. Execution: Platform Security

• Security Chain

hardware

JCVM

JCRE Global Platform

applet

.java
.jar

.class CAPjavac converter

export

Run-Time Checking

1. ensuring language type safety
(e.g., casts, boundary checks)

2. applet isolation through an applet firewall
(instead of class loaders and security managers
 as in the Java sandbox model)

3. SECURITY & CRYPTOGRAPHY 12Copyright © 2004-2007 IBM Corp.

A. Execution: Applet Firewall & Object Sharing

• Applet Firewall

– applet isolation: confines an applet to its own designated area and prevents
access to the contents or behaviours of objects owned by other applets

• Object Sharing

– applet cooperation: allows cooperative applets on a single card through a well-
defined and secure object sharing mechanism

3. SECURITY & CRYPTOGRAPHY 13Copyright © 2004-2007 IBM Corp.

A. Execution: Applet Firewall

• Protects against malfunctioning or “hostile” applets

developer mistakes and design oversights, hacking attacks

• Partitions the JavaCard object system into separate contexts

– firewall is the boundary between different contexts

– JCRE assigns applets their context during install

• all applet instances of the same package share the same (group) context
(i.e., object access between applets in the same group context is allowed)

– JCRE maintains its own JCRE context w/ special privileges

• access from the JCRE context to any applet’s context is universally allowed

• access from an applet context to the JCRE context only via
(Temporary) Entry-Point Objects or global arrays

3. SECURITY & CRYPTOGRAPHY 14Copyright © 2004-2007 IBM Corp.

A. Execution: Applet Firewall

• Object Ownership

– new objects are owned by the currently active context
(exactly one active context at any time)

– primitive static type arrays are owned by the group context of the package
(created before any applet instance and initialized by the converter)

• Transient Arrays and Context

– transient arrays are accessible only if the array’s owning context is active

• Static Fields and Methods

– NO run-time check when a static fields is accessed or a static method invoked
(i.e., static fields and methods are accessible from any context)

– BUT for accessing objects referenced by static fields, the firewall rules apply

– static methods execute in the caller’s context
(i.e., objects created inside a static method are assigned the caller’s context)

3. SECURITY & CRYPTOGRAPHY 15Copyright © 2004-2007 IBM Corp.

A. Execution: Applet Firewall

JCRE context

group context group context

applet
context

applet
context

applet
context

PACKAGE BPACKAGE A

SYSTEM

Copyright © 2004-2007 IBM Corp.

DEMO

3. SECURITY & CRYPTOGRAPHY 17Copyright © 2004-2007 IBM Corp.

A. Execution: Object Sharing

• Crossing Context Boundaries

1. JCRE privileges 2. JCRE entry-point objects

 3. global arrays 4. shareable interfaces

• Underlying Mechanism: Context Switch

– context switches occur during invocation of and return from instance methods of
an object owned by a different context (incl. exception exits)

• invocation: the current context is saved and the new context becomes the
currently active context
! the invoked method executes with the access right of the new context

and all objects created are owned by the new context

• return/exit: the original context is restored and becomes active again

– context switches can be nested

– NOTE: Accessing instance fields in a different context is never allowed

3. SECURITY & CRYPTOGRAPHY 18Copyright © 2004-2007 IBM Corp.

A. Execution: Object Sharing

1. JCRE Privileges

– JCRE as “card executive” runs in the system context w/ special privileges

– JCRE context is active after reset

– JCRE may invoke any method on any object (causing a context switch)
access any instance field of any object

e.g., invokes Applet.process(), Applet.install(), Applet.select(), …

applet

JCRE

context switch
applet loses JCRE
privileges, object created
are owned by the applet

context switch
JCRE context is
restored

3. SECURITY & CRYPTOGRAPHY 19Copyright © 2004-2007 IBM Corp.

A. Execution: Object Sharing

2. JCRE Entry-Point Objects

– allow applets to request system services to perform privileged system routines

– JCRE Entry-Point Objects are objects that…

• …are owned by the JCRE context

• …contain public entry-point methods to be invoked from any context
(no fields are accessible, though)

– invoking an entry-point method causes a context switch to the JCRE context

– Temporary JCRE Entry-Level Objects

• references to these object cannot be stored in class or instance variables

• examples: the APDU object, all JCRE-owned exception objects

– Permanent JCRE Entry-Level Objects

• references to these object can be stored and freely re-used

• example: the JCRE-owned AID objects

3. SECURITY & CRYPTOGRAPHY 20Copyright © 2004-2007 IBM Corp.

A. Execution: Object Sharing

3. Global Arrays

• memory buffer shared by the JCRE and all applets
(data encapsulated in JCRE Entry-Point Objects is not directly accessible)

• arrays of primitive type (can only be designated by the JCRE)

• special type of Temporary JCRE Entry-Point Objects: public fields (i.e., array
components and array length) can be accessed from any context

• public methods are treated as for any other JCRE Entry-Point Object
(only method is Object.equals(), invocation causes context switch)

• automatically cleared whenever an applet is selected or before the JCRE
accepts a new APDU command

• examples:
APDU buffer byte array;
Applet.install() byte array parameter (= APDU buffer?!)

3. SECURITY & CRYPTOGRAPHY 21Copyright © 2004-2007 IBM Corp.

A. Execution: Object Sharing

4. Shareable Interfaces

– extends directly or indirectly javacard.framework.Shareable

– defines a set of methods available to other applets

– different interfaces allow “wearing a different hat” for different applets

– object implementing shareable interfaces: Shareable Interface Object (SIO)

– class type, instance fields, or other other methods of the SIO are not exposed

public interface Shareable { // tagging interface
}

group context

applet context

SIO

SIO

applet
context

applet
context

3. SECURITY & CRYPTOGRAPHY 22Copyright © 2004-2007 IBM Corp.

A. Execution: Shareable Interfaces Example

• Combination of a Wallet applet and an Air-Miles applet

– Wallet: stores electronic cash

– Air-Miles: provides travel incentives in exchange for miles

– Cooperation: For every $ spent, one air mile is credited

1. Air-Miles applet creates an SIO (acts as server)

2. Wallet applet requests the SIO from the Air-Miles applet (acts as client)

3. Wallet applet requests miles to be credited by invoking a method of the SIO

Air-Miles applet

SIO
Wallet applet

request miles

3. SECURITY & CRYPTOGRAPHY 23Copyright © 2004-2007 IBM Corp.

A. Execution: Shareable Interfaces Example

package com.nevercomebackairlines.airmiles;

import javacard.framework.*;

public interface AirMilesInterface extends Shareable {
 public void grantMiles(short amount);
};

public class AirMilesApplet extends Applet implements AirMilesInterface {
 private short miles;

 public void grantMiles(short amount) {
 miles = (short)(miles + amount);
 }

 ...
}

3. SECURITY & CRYPTOGRAPHY 24Copyright © 2004-2007 IBM Corp.

A. Execution: javacard.framework

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management,
atomic transaction management, inter-applet object sharing

• javacard.framework.Applet

– abstract base class that defines a JavaCard applet

3. SECURITY & CRYPTOGRAPHY 25Copyright © 2004-2007 IBM Corp.

A. Execution: javacard.framework

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management,
atomic transaction management, inter-applet object sharing

• javacard.framework.Applet

– abstract base class that defines a JavaCard applet

public final class JCSystem {
public static AID lookupAID

(byte[] buffer, short offset, byte length);
public static AID getPreviousContextAID();

public static Shareable getAppletShareableInterfaceObject
(AID server_aid, byte parameter);

...
};

3. SECURITY & CRYPTOGRAPHY 26Copyright © 2004-2007 IBM Corp.

A. Execution: javacard.framework

• javacard.framework.JCSystem

– collection of methods to control applet execution, memory management,
atomic transaction management, inter-applet object sharing

• javacard.framework.Applet

– abstract base class that defines a JavaCard applet

public class Applet {
public Shareable getShareableInterfaceObject

(AID client_aid, byte parameter);

...
};

3. SECURITY & CRYPTOGRAPHY 27Copyright © 2004-2007 IBM Corp.

A. Execution: Shareable Interfaces Example

package com.nevercomebackairlines.airmiles;

import javacard.framework.*;

public class AirMiles extends Applet implements AirMilesInterface {
 public Shareable getShareableInterfaceObject(AID client_aid, byte parameter) {
 // return the shareable interface object
 return this;
 }

 ...
}

Wallet applet
Air-Miles
 applet SIO

JCRE

" #$ %

JCSystem.getAppletShareableInterfaceObjectApplet.getShareableInterfaceObject

SIO (or null) SIO (or null)

3. SECURITY & CRYPTOGRAPHY 28Copyright © 2004-2007 IBM Corp.

A. Execution: Shareable Interfaces Example

package com.wheredidallmymoneygobank.wallet;

import javacard.framework.*;
import com.nevercomebackairlines.airmiles.AirMilesInterface;

public class Wallet extends Applet {
 private short balance;

 public void debit(short amount) {
 if (balance < amount)
 ISOException.throwIt(SW_EXCEED_BALANCE);

 balance = (short)(balance - amount);

 AID aid;
 AirMilesInterface sio;

 if ((aid = JCSystem.lookupAID(AIR_MILES_AID,(short)0,AIR_MILES_AID.length)) == null)
 ISOException.throwIt(SW_NO_AIRMILES_APPLET);

 sio = (AirMilesInterface)JCSystem.getAppletShareableInterfaceObject(aid,SECRET);
 if (sio == null)
 ISOException.throwIt(SW_NO_AIRMILES_SIO);

 sio.grantMiles(amount)
 }
 ...
}

3. SECURITY & CRYPTOGRAPHY 29Copyright © 2004-2007 IBM Corp.

A. Execution: Shareable Interfaces Example

Wallet applet
Air-Miles
 applet SIO

JCRE

" #$ %

JCSystem.getAppletShareableInterfaceObjectApplet.getShareableInterfaceObject

SIO (or null) SIO (or null)

• Context Switches

AirMilesInterface.grantMiles

return

&

'

3. SECURITY & CRYPTOGRAPHY 30Copyright © 2004-2007 IBM Corp.

A. Execution: Object Sharing

4. Shareable Interfaces: Parameter and Return Types

– passing objects (incl. arrays) as parameters or return values does not work
because of the object firewall

e.g., objects created by the Wallet applet are not accessible by the AirMiles applet

– the following types can be passes in shareable interface methods

• primitive values: passed on the stack

• static fields: public static fields are accessible from any context (but objects
referenced by such static fields are protected by the firewall)

• JCRE entry-point objects: public methods are accessible from any context

• global arrays: accessible from any context

• SIOs: shareable interface methods are accessible from any context
(allows call backs from the server to the client)

3. SECURITY & CRYPTOGRAPHY 31Copyright © 2004-2007 IBM Corp.

A. Execution: Shareable Interfaces Example

• Authentication of the Client Applet (simple)

package com.nevercomebackairlines.airmiles;

import javacard.framework.*;

public class AirMiles extends Applet implements AirMilesInterface {
 public Shareable getShareableInterfaceObject(AID clientAID, byte param) {
 // assume that the Wallet AID is known
 if ((!clientAID.equals(WALLET_AID,(short)0,WALLET_AID.length) || (param != SECRET))
 return null;

 // return the shareable interface object
 return this;
 }

 public void grantMiles(short amount) {
 AID clientAID = JCSystem.getPreviousContextAID();
 if (!clientAID.equals(WALLET_AID,(short)0,WALLET_AID.length)
 ISOException.throwIt(SW_UNAUTHORIZED_CLIENT);

 miles = (short)(miles + amount);
 }

 ...
}

3. SECURITY & CRYPTOGRAPHY 32Copyright © 2004-2007 IBM Corp.

A. Execution: Object Sharing

4. Shareable Interfaces: JCSystem.getPreviousContextAID()

returns the JCRE-owned AID object associated with the applet that was active
at the time of the last context switch

CSIO
B

A

getPreviousContextAID()
returns the AID of applet B

3. SECURITY & CRYPTOGRAPHY 33Copyright © 2004-2007 IBM Corp.

A. Execution: Shareable Interfaces Example

• Authentication of the Client Applet (advanced)

package com.nevercomebackairlines.airmiles;

import javacard.framework.*;
import com.wheredidallmymoneygobank.wallet.AuthenticationInterface;

public interface AirMilesInterfaces extends Shareable {
 public void grantMiles(AuthenticationInterface auth, byte[] buffer, short amount);
}

public class AirMiles extends Applet implements AirMilesInterface {
 public void grantMiles(AuthenticationInterface auth, byte[] buffer, short amount) {
 generateChallenge(buffer);

 auth.generateResponse(buffer);

 if (!checkResponse(buffer))
 ISOException.throwIt(SW_UNAUTHORIZED_CLIENT);

 miles = (short)(miles + amount);
 }

 ...
}

3. SECURITY & CRYPTOGRAPHY 34Copyright © 2004-2007 IBM Corp.

A. Execution: Shareable Interfaces Example

• Authentication of the Client Applet (advanced, cont’d)

package com.wheredidallmymoneygobank.wallet;

public interface AuthenticationInterface extends Shareable {
 public void generateResponse(byte[] buffer);
}

public class Wallet extends Applet implements AuthenticationInterface {
 public void generateResponse(byte[] buffer) {
 ...
 }

 public void debit(short amount) {
 ...

 sio.grantMiles(this,APDU.getCurrentAPDUBuffer(),amount)
 }

 ...
}

Copyright © 2004-2007 IBM Corp.

DEMO

