
3. SECURITY & CRYPTOGRAPHY 1Copyright © 2004-2007 IBM Corp.

Overview

A. Execution model

language features, sandbox, applet firewall
(object isolation and sharing)

B. On-card Cryptography

algorithms and protocols, good cryptographic practice

C. Protecting against attacks

SPA/DPA, timing attacks, fault injection

3. SECURITY & CRYPTOGRAPHY 2Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Cryptography is a Tool

– cryptology vs. cryptanalysis

– encryption/decryption, secure hashes, digital signatures, true randomness

– goals: confidentiality, authentication, integrity, non-repudiation

• Terminology

– confidentiality: the contents of a message should only be rea dable by the
receiver (and sender)

– authentication: a receiver should be able to ascertain a message’s origin

– integrity: a receiver should be able to verify that the message has not been
modified in transit

– non-repudiation: a sender should not be able to falsely deny later that he sent a
message

3. SECURITY & CRYPTOGRAPHY 3Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Cryptography is a Tool

– cryptology vs. cryptanalysis

– encryption/decryption, secure hashes, digital signatures, true randomness

– goals: confidentiality, authentication, integrity, non-repudiation

• Terminology

BOB

ALICE

original
plaintext

decrypt

ciphertext

plaintext encrypt

M
ALLOR

Y

3. SECURITY & CRYPTOGRAPHY 4Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Cryptography is a Tool

– cryptology vs. cryptanalysis

– encryption/decryption, secure hashes, digital signatures, true randomness

– goals: confidentiality, authentication, integrity, non-repudiation

• “Good Cryptography” vs. “Security by Obscurity”

– algorithm is known and has been widely scrutinized

– security rests only in the key

– beware of “rolled-my-own” algorithms, a.k.a. “snake oil”

3. SECURITY & CRYPTOGRAPHY 5Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Symmetric Cryptography

– a.k.a. “conventional” algorithms, single-key or secret-key algorithms

– decryption key K’ can be calculated from encryption key K and vice versa
(usually K = K’, so we use only K)

EK(M) = C DK(C) = M

• sender and receiver must agree on a key before communicating securely
! key distribution problem

– stream ciphers: operate on the plain text a single bit or byte at a time

– block ciphers: operate on the plain text in blocks (groups of bits), e.g. 64 bits

3. SECURITY & CRYPTOGRAPHY 6Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Symmetric Cryptography: DES

– since 1975

– block cipher encrypting data in 64-bits blocks

– key length is 56 bits (+ 8 bits parity checking)

– algorithm

• initial permutation (optional)

• block is broken into two halves, each one 32 bits longs

• 16 rounds of identical operations, called function f

• the two halves are joined again

• inverse of the initial permutation (optional)

3. SECURITY & CRYPTOGRAPHY 7Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Symmetric Cryptography: DES

– since 1975

– block cipher encrypting data in 64-bits blocks

– key length is 56 bits (+ 8 parity checking)

– algorithm

• initial permutation (optional)

• block is broken into two halves, each one 32 bits longs

• 16 rounds of identical operations, called function f

• the two halves are joined again

• inverse of the initial permutation (optional)

3. SECURITY & CRYPTOGRAPHY 8Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Symmetric Cryptography: DES

– since 1975

– block cipher encrypting data in 64-bits blocks

– key length is 56 bits (+ 8 parity checking)

– algorithm

• initial permutation (optional)

• block is broken into two halves, each one 32 bits longs

• 16 rounds of identical operations, called function f

• the two halves are joined again

• inverse of the initial permutation (optional)

3. SECURITY & CRYPTOGRAPHY 9Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Symmetric Cryptography: DES (cont’d)

– ECB mode (electronic code book)

• a single block of plain text is converted into a single block of cipher text
independently of order

• it’s theoretically possible to create a “code book”

• prone to block substitution or replay

– CBC mode (cipher block chaining)

• before encrypting, the block of plain-text is XORed with the previous
ciphertext block ! blocks are chained

• first block is XORed with an initial vector (IV)

– Padding

• add some regular pattern to make the last block complete

• use “ciphertext stealing”

– multiple DES ! 3DES w/ two key (112 bits)

3. SECURITY & CRYPTOGRAPHY 10Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Symmetric Cryptography: DES (cont’d)

– ECB mode (electronic code book)

• a single block of plain text is converted into a single block of cipher text
independently of order

• it’s theoretically possible to create a “code book”

• prone to block substitution or replay

– CBC mode (cipher block chaining)

• before encrypting, the block of plain-text is XORed with the previous
ciphertext block ! blocks are chained

• first block is XORed with an initial vector (IV)

– Padding

• add some regular pattern to make the last block complete

• use “ciphertext stealing”

– multiple DES ! 3DES

3. SECURITY & CRYPTOGRAPHY 11Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Symmetric Cryptography: DES (cont’d)

– ECB mode (electronic code book)

• a single block of plain text is converted into a single block of cipher text
independently of order

• it’s theoretically possible to create a “code book”

• prone to block substitution or replay

– CBC mode (cipher block chaining)

• before encrypting, the block of plain-text is XORed with the previous
ciphertext block ! blocks are chained

• first block is XORed with an initial vector (IV)

– Padding

• add some regular pattern to make the last block complete

• use “ciphertext stealing”

– multiple DES ! 3DES w/ two keys (112 bits)

3. SECURITY & CRYPTOGRAPHY 12Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Symmetric Cryptography: DES (cont’d)

– ECB mode (electronic code book)

• a single block of plain text is converted into a single block of cipher text
independently of order

• it’s theoretically possible to create a “code book”

• prone to block substitution or replay

– CBC mode (cipher block chaining)

• before encrypting, the block of plain-text is XORed with the previous
ciphertext block ! blocks are chained

• first block is XORed with an initial vector (IV)

– Padding

• add some regular pattern to make the last block complete

• use “ciphertext stealing”

– multiple DES ! 3DES w/ two keys (112 bits)

ciphertextplaintext

DES DES-1 DES

DES-1DESDES-1

K1 K1K2

encrypt

decrypt

3. SECURITY & CRYPTOGRAPHY 13Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Symmetric Cryptography: AES

– chosen by NIST in 2001 as a replacement for DES

– block cipher encrypting data in 128-bits blocks

– key length is 128 bits, 192 bits, or 256 bits (may be extended in 32-bits steps)

– works in EBC and CBC mode

– time to crack (trying 255 keys per second)

• AES-192: 149 trillion years

• 3DES: 4.6 billion years

– faster and less resource consuming than DES

3. SECURITY & CRYPTOGRAPHY 14Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Public-Key Cryptography

– two keys: one public P and the other one private S

– anyone with a public key can encrypt a message but not decrypt it

– only the person with the private key can decrypt the message

– it’s computationally unfeasible to derive S from P

– solves the key distribution problem

– less efficient that symmetric key cryptography

1. Bob sends Alice his public key P

2. Alice encrypts M with P: EP(M) = C

3 Bob decrypts C with S: DS(C) = M

3. SECURITY & CRYPTOGRAPHY 15Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Public-Key Cryptography: RSA

– invented by Ron Rivest, Adi Shamir, and Leonard Adleman (1978)

– security from the difficulty of factoring large numbers
(recovering the plaintext is equivalent to factoring the product of two primes)

– key length: at least 1024 bits (as of 2004)

– key generation

• choose two large prime numbers p, q and calculate n = p· q

• randomly choose e such that e and (p-1)· (q-1) are relatively prime

• calculate d such that e· d = 1 mod (p-1)· (q-1)

• public key: e, n private key: d

– algorithm

• encrypt: ci = mi
e mod n with ci < 2k < n

• decrypt: mi = ci
d mod n since ci

d = (mi
e)d = mi

ed = mi mod n

3. SECURITY & CRYPTOGRAPHY 16Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Public-Key Cryptography: Elliptic Curve Cryptography, ECC (1985)

– elliptic curve: y2 + x· y = x3 + a2· x + a6 with x, y being complex, real, integers,
polynomial basis, or any other kind of finite field element

– security from the difficulty of the elliptic curve discrete logarithm problem
(given points F and k· F find k)

– key length: not less than 160 bits (which is comparable to 1024-bits RSA)

– key generation

• choose curve C and a public base point B

• choose a random number s as private key, then P = s· B is the public key

– algorithm

• encrypt: .choose a random number k, calculate R = k· B and S = (xS, yS) = k· P
 encrypt message with a symmetric cipher using xS as key
 send R and the encrypted message

• decrypt: .from R calculate S = b· R = b· (k· B) to get xS

3. SECURITY & CRYPTOGRAPHY 17Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Public-Key Cryptography: Elliptic Curve Cryptography, ECC (1985)

– alternative to RSA introduced in 1985

– elliptic curve: y2 + x· y = x3 + a2· x + a6 with x, y being complex, real, integers,
polynomial basis, or any other kind of finite field element

– security from the difficulty of the elliptic curve discrete logarithm problem
(given points F and k· F find k)

– key length: not less than 160 bits (which is comparable to 1024-bits RSA)

– key generation

• choose curve C and a public base point B

• choose a random number s as private key, then P = s· B is the public key

– algorithm

• encrypt: .choose a randum number k, calculate R = k· B and S = (xS, yS) = k· P
 encrypt message with a symmetric cipher using xS as key
 send R and the encrypted message

• decrypt: .from R calculate S = b· R = b· (k· B) to get xS

3. SECURITY & CRYPTOGRAPHY 18Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Message Digest

– secure one-way hash function: arbitrary sized data fixed length hash

– reqs: easy to calculate but difficult to reverse the computation
collisions are rare (i.e., different data rarely generates same hash)
difficult to fabricate data with some specific hash

– helps to achieve data integrity if sent along with the data

– examples:

• MD5: generates an 128-bits hash

• SHA-1: generates an 160-bits hash

– vulnerable to man-in-the-middle-attack ! message authentication code (MAC)

• calculate hash on both the input data and some key

3. SECURITY & CRYPTOGRAPHY 19Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Digital Signature

– computed by encrypting a message digest using public-key cryptography

– provides authentication, integrity, and non-repudiation

1. calculates message digest H for message M
2. calculates Sig = ES(H)
3. sends (M | Sig)

calculates message digest H for message M 4.
calculates H’ = DP(Sig) 5.

compares H and H’ 6.

3. SECURITY & CRYPTOGRAPHY 20Copyright © 2004-2007 IBM Corp.

B. On-Card: Cryptography Quick Tour

• Randomness

– crucial in cryptography: generating keys, blinding, and padding

– random number generator should not be influenced by external conditions
(e.g., temperature, voltage)

– hardware: physical processes (e.g., unstable electronic circuit, radioactive decay)

– software: pseudo-random generators using deterministic algorithms

• initialized with some “random” seed such as the current time

• must be good enough to withstand statistical tests(e.g., !2 or FIPS 140-2)

DES

cy
cl

ic
 r
in

g
bu

ff
er

+

random bits

3. SECURITY & CRYPTOGRAPHY 21Copyright © 2004-2007 IBM Corp.

B. On-Card: Usage Scenarios

• Cryptography is used for…

– authentication: an applet wants to authenticate the host and vice versa

– confidentiality: sensitive data must be protected (on-card & communication)

– integrity: secure communication against modification (e.g., via MAC)

– proof of authorization: e.g., challenge/response between host and applet

– encryption: e.g., digital signatures

• But…

– avoid computationally expensive cryptographic mechanisms on voluminous data

– always look at the big picture – the smart card is just one piece!

3. SECURITY & CRYPTOGRAPHY 22Copyright © 2004-2007 IBM Corp.

B. On-Card: JavaCard Cryptography

• Functionality

– key storage and generation

– encryption/decryption (symmetric and public key)

– message digests

– signatures

– randomness

• Designed for Algorithm Extensibility

– set of base classes/interfaces (e.g., MessageDigest, Cipher)

– instantiation via factory methods: getInstance()

e.g., MessageDigest md5;

md5 = MessageDigest.getInstance(MessageDigest.ALG_MD5, …);

3. SECURITY & CRYPTOGRAPHY 23Copyright © 2004-2007 IBM Corp.

B. On-Card: javacard.security

• javacard.security.Key

– base interface for all keys

• javacard.security.KeyPair

– container for a public/private key pair

• javacard.security.KeyBuilder

– the key object factory

• javacard.security.MessageDigest

– base class for hashing algorithms

• javacard.security.Signature

– base class for signature algorithms

• javacard.security.RandomData

– base class for random number generation

3. SECURITY & CRYPTOGRAPHY 24Copyright © 2004-2007 IBM Corp.

B. On-Card: javacard.security

• javacard.security.Key

– base interface for all keys

• javacard.security.KeyPair

– container for a public/private key pair

• javacard.security.KeyBuilder

– the key object factory

• javacard.security.MessageDigest

– base class for hashing algorithms

• javacard.security.Signature

– base class for signature algorithms

• javacard.security.RandomData

– base class for random number generation

public interface Key {

 public void clearKey();

 public short getSize();

 public byte getType();

 public boolean isInitialized();

};

3. SECURITY & CRYPTOGRAPHY 25Copyright © 2004-2007 IBM Corp.

B. On-Card: javacard.security

• javacard.security.Key

– base interface for all keys

• javacard.security.KeyPair

– container for a public/private key pair

• javacard.security.KeyBuilder

– the key object factory

• javacard.security.MessageDigest

– base class for hashing algorithms

• javacard.security.Signature

– base class for signature algorithms

• javacard.security.RandomData

– base class for random number generation

public final class KeyPair {

 public KeyPair(byte algorithm, short keyLength);

 public KeyPair(PublicKey pub, PrivateKey priv);

 public void genKeyPair();

 public PrivateKey getPrivate();

 public PublicKey getPublic();

};

public interface PrivateKey extends Key {}

public interface PublicKey extends Key {}

3. SECURITY & CRYPTOGRAPHY 26Copyright © 2004-2007 IBM Corp.

B. On-Card: javacard.security

• javacard.security.Key

– base interface for all keys

• javacard.security.KeyPair

– container for a public/private key pair

• javacard.security.KeyBuilder

– the key object factory

• javacard.security.MessageDigest

– base class for hashing algorithms

• javacard.security.Signature

– base class for signature algorithms

• javacard.security.RandomData

– base class for random number generation

public class KeyBuilder {

 public Key buildKey(byte keyType, short keyLength,

 boolean keyEncryption);

};

3. SECURITY & CRYPTOGRAPHY 27Copyright © 2004-2007 IBM Corp.

B. On-Card: javacard.security

• javacard.security.Key

– base interface for all keys

• javacard.security.KeyPair

– container for a public/private key pair

• javacard.security.KeyBuilder

– the key object factory

• javacard.security.MessageDigest

– base class for hashing algorithms

• javacard.security.Signature

– base class for signature algorithms

• javacard.security.RandomData

– base class for random number generation

public class MessageDigest {

 public static MessageDigest getInstance

 (byte algorithm, boolean externalAccess);

 public byte getAlgorithm();

 public byte getLength();

 public void reset();

 public void update

 (byte[] inbuf, short inoffset, short inlength);

 public short doFinal

 (byte[] inbuf, short inoffset, short inlength,

 byte[] outbuf, short outoffset);

};

Indicates that the instance will be
shared among multiple applet
instances and that the instance
will also be accessable (via a
Shareable interface) when the
owner of the instance is not the
currently selected applet.

3. SECURITY & CRYPTOGRAPHY 28Copyright © 2004-2007 IBM Corp.

B. On-Card: javacard.security

• javacard.security.Key

– base interface for all keys

• javacard.security.KeyPair

– container for a public/private key pair

• javacard.security.KeyBuilder

– the key object factory

• javacard.security.MessageDigest

– base class for hashing algorithms

• javacard.security.Signature

– base class for signature algorithms

• javacard.security.RandomData

– base class for random number generation

public class Signature {

 public static Signature getInstance

 (byte algorithm, boolean externalAccess);

 public byte getAlgorithm();

 public short getLength();

 public void init(Key key, byte mode);

 public void init

 (Key key, byte mode,

 byte[] buffer, short offset, short length);

 public void update

 (byte[] inbuf, short offset, short length);

 public short sign

 (byte[] inbuf, short inoffset, short inlength,

 byte[] sigbuf, short sigoffset);

 public short verify

 (byte[] inbuf, short inoffset, short inlength,

 byte[] sigbuf, short sigoffset, short siglength);

};

3. SECURITY & CRYPTOGRAPHY 29Copyright © 2004-2007 IBM Corp.

B. On-Card: javacard.security

• javacard.security.Key

– base interface for all keys

• javacard.security.KeyPair

– container for a public/private key pair

• javacard.security.KeyBuilder

– the key object factory

• javacard.security.MessageDigest

– base class for hashing algorithms

• javacard.security.Signature

– base class for signature algorithms

• javacard.security.RandomData

– base class for random number generation

public class RandomData {

 public static RandomData getInstance(byte algorithm);

 public void setSeed

 (byte[] buffer, short offset, short length);

 public void generateData

 (byte[] buffer, short offset, short length);

};

3. SECURITY & CRYPTOGRAPHY 30Copyright © 2004-2007 IBM Corp.

B. On-Card: javacardx.crypto

• javacardx.crypto.Cipher

– base class for all cipher algorithms

public class Cipher {

 public static Cipher getInstance

 (byte algorithm, boolean externalAccess);

 public void init(Key key, byte mode);

 public void init

 (Key key, byte mode,

 byte[] buffer, short offset, short length);

 public short update

 (byte[] inbuf, short offset, short length

 byte[] outbuf, short outoffset);

 public short doFinal

 (byte[] inbuf, short inoffset, short inlength,

 byte[] outbuf, short outoffset);

};

3. SECURITY & CRYPTOGRAPHY 31Copyright © 2004-2007 IBM Corp.

B. On-Card: Examples

• Key Building and Generation

// persistent/transient DES key

DESKey desKey;

desKey = (DESkey)KeyBuilder.buildKey(KeyBuilder.TYPE_DES, // TYPE_DES_TRANSIENT_RESET

 KeyBuilder.LENGTH_DES3_2KEY,false);

desKey.setKey(...);

// RSA private key

RSAPrivateKey rsaPrivate;

rsaPrivate = (RSAPrivateKey)KeyBuilder.buildKey(KeyBuilder.TYPE_RSA_PRIVATE,

 KeyBuilder.LENGTH_RSA_1024,false);

rsaPrivate.setExponent(...);

rsaPrivate.setModulus(...);

// generate an RSA key pair

KeyPair rsaPair;

rsaPair = new KeyPair(KeyPair.ALG_RSA,KeyBuilder.LENGTH_RSA_1024);

rsaPair.genKeyPair();

3. SECURITY & CRYPTOGRAPHY 32Copyright © 2004-2007 IBM Corp.

B. On-Card: Examples

• Cipher

// allocate Cipher engine

Cipher cipher;

cipher = Cipher.getInstance(Cipher.ALG_DES_CBC_NO_PAD,false);

// init for DES encryption/decryption

cipher.init(desKey,Cipher.MODE_ENCRYPT);

cipher.init(desKey,Cipher.MODE_DECRYPT);

// feed the data and encrypt/decrypt

short ofs = cipher.update(m1,(short)0,(short)(m1.length),outbuf,(short)0);

ofs += cipher.update(m2,(short)0,(short)8,outbuf,ofs);

cipher.doFinal(m3,(short)0,(short)(m3.length),outbuf,ofs);

3. SECURITY & CRYPTOGRAPHY 33Copyright © 2004-2007 IBM Corp.

B. On-Card: Examples

• Message Digest

// allocate SHA message digest

MessageDigest sha;

sha = MessageDigest.getInstance(MessageDigest.ALG_SHA,false);

...

// feed data and get hash

sha.update(m1,(short)0,(short)(m1.length));

sha.update(m2,(short)0,(short)8);

sha.doFinal(m3,(short)0,(short)(m3.length),hash,(short)0);

3. SECURITY & CRYPTOGRAPHY 34Copyright © 2004-2007 IBM Corp.

B. On-Card: Examples

• Signature

// allocate RSA/SHA signature object

Signature signature;

signature = Signature.getInstance(Signature.ALG_RSA_SHA_ISO9796,false);

// specifiy the key to use and whether to sign or to verify

signature.init(privateKey,Signature.MODE_SIGN);

signature.init(publicKey,Signature.MODE_VERIFY);

// feed the data and sign/verify

signature.update(s1,(short)0,(short)(s1.length));

signature.sign(s2,(short)0,(short)(s2.length),sigbuf,(short)0);

if (!signature.verify(s2,(short)0,(short)(s2.length),sigbuf,sigofs,siglen))

 ISOException.throwIt(SW_WRONG_SIGNATURE)

3. SECURITY & CRYPTOGRAPHY 35Copyright © 2004-2007 IBM Corp.

B. On-Card: Examples

• Random

// allocate Random engine

Random rnd;

rnd = Random.getInstance(RandomData.ALG_SECURE_RANDOM); // ALG_PSEUDO_RANDOM

// set seed

rnd.setSeed(seed,seedOffset,seedLength);

// generate random data

rnd.generateData(rndbuffer,rndoffset,rndlength);

Copyright © 2004-2007 IBM Corp.

DEMO

