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Overview

A. Execution model

language features, sandbox,
applet firewall: object isolation and sharing

B. On-card Cryptography

algorithms and protocols, good cryptographic practice

C. Protecting against attacks

timing attacks, SPA/DPA, fault injection
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C. Attacks: Timing

• “Optimized” Comparison Operations

– attackers learn from early exits (e.g., testing a PIN digit-wise)
! code should have constant run time

boolean arrayCompare(byte[] ba1, byte[] ba2) {

   short l;

   if ((l = ba1.length) != ba2.length)

     return false;

   while (--l >= 0)

     if (ba1[l] != ba2[l])

       return false;

   return true;

}

OOPS
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C. Attacks: Timing
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   short l;
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     return false;

   while (--l >= 0)
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       return false;

   return true;

}

OOPS

boolean arrayCompare(byte[] ba1, byte[] ba2) {

   short l1, l2;

   boolean result = true;

   if ((l1 = ba1.length) != (l2 = ba2.length))

     result = false;

   l1 = MIN(l1,l2);

   while (--l1 >= 0)

     if (ba1[l1] != ba2[l1])

       result = false;

   return result;

}

GOOD
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C. Attacks: Power Analysis

• semiconductor logic gates are constructed out of transistors
! electrons flow across the silicon substrate when charge is applied to (or

 removed from) a transistor’s gate, consuming power and producing
 electromagnetic radiation

• Simple Power Analysis (SPA)

– measures a circuits power consumption by inserting a resistor in series with power or
ground
(the voltage difference across a resistor divided by the resistance yields the current)

– large-scale power variations due to the instruction sequence

– digitally samples at rates over 1 Ghz with less than 1% error are possible
(devices capable of sampling at 20 Mhz cost less than $400)
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C. Attacks: Power Analysis

• SPA: DES

– full trace, 16 rounds
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C. Attacks: Power Analysis

• SPA: DES (cont’d)

– shows 2nd and 3rd round

– 28-bits key registers C and D are rotated once in round 2 and twice in round 3
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C. Attacks: Power Analysis

• SPA: DES (cont’d)

jump

no jump
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C. Attacks: Power Analysis

• SPA: Areas of Attack

– key schedules: DES involves rotating 28-bits key registers with conditional branches to
check the bit shifted of the end

– permutations: conditional branches can cause power consumption differences

– comparisons: memory comparisons typically perform a conditional branch when a
mismatch is found

– multipliers: modular multiplication tends to leak information about the data

– exponentiators: simple modular exponentiation scans across the exponent and
performs a squaring operation in every iteration with an additional multiplication
operation for each 1 exponent bit
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C. Attacks: Power Analysis

• SPA: Countermeasures

– avoid using keys for conditional branching operations
(may require “creative” coding and cause serious performance penalties)

– constant execution paths
(possibly introducting dummy operations)

– hardware implementations have sufficiently small power consumption variations that
SPA does not yield key material
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C. Attacks: Power Analysis

• Differential Power Analysis (DPA)

– measures effects correlated to data values being manipulated (much smaller, often
overshadowed by measurement errors)
! statistical functions tailored to the target algorithm

– signals leaking during public-key operations tend to be stronger than for symmetric key
operations

– can be used to break implementations of virtually all algorithms

• DPA: Countermeasures

– reduce signal sizes (e.g., constant execution path code, use operations that leak less,
physically shielding the device)

– introduce noise and temporal obfuscation (randomize execution time/ordering)

• Related Attacks

– examine the electromagnetic radiation
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C. Attacks: PIN Counter

• Example: Circumvent a PIN try count

class PIN {

   byte[] _pin;

   byte tryCount = 3;

   boolean verify(byte[] pin) {

      boolean result = true;

      for (short i = 0; i < _pin.length; ++i)

        result = result && (_pin[i] == pin[i]);

      

      if (!result)

        --tryCount;

      return result;

   }

};

OOPS
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C. Attacks: PIN Counter

• Example: Circumvent a PIN try count

class PIN {

   byte[] _pin;

   byte tryCount = 3;

   boolean verify(byte[] pin) {

      boolean result = true;

      for (short i = 0; i < _pin.length; ++i)

        result = result && (_pin[i] == pin[i]);

      

      if (!result)

        --tryCount;

      return result;

   }

};

class PIN {

   byte[] _pin;

   byte tryCount = 3;

   boolean verify(byte[] pin) {

      boolean result = true;

      --tryCount;

      for (short i = 0; i < _pin.length; ++i)

        result = result && (_pin[i] == pin[i]);

      

      if (result)

        ++tryCount;

      return result;

   }

};

GOOD

OOPS
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C. Attacks: Fault Injection

• light attacks may erase/modify individual memory cells

• two types of attacks:

– code/PC manipulation

– modification of data (e.g., return values, key material)

• Code/PC manipulation

– “erased” instructions usually become nop instructions

– may eliminate conditional jumps or erase security checks

– countermeasures: default to error handling code, jump to “good” cases
code traces (very complex)
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C. Attacks: Fault Injection

• Example: Avoid PIN check result

if (pinOK) { sload ...

   // allow access ifeq ...

...

} else { ...

   // error handling

}

OOPS 
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C. Attacks: Fault Injection

• Example: Avoid PIN check result

if (pinOK) { bspush ...

   // allow access ifeq ...

...

} else { ...

   // error handling

}

OOPS 

if (pinOK == false) { generating a jump to the “good”
   // error handling case is much more difficult

} else {

   // allow access

}

GOOD
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C. Attacks: Fault Injection

• Modification of Data

– manipulation of return values (e.g., after a PIN check)

! avoid return values which may be “easily” generated such as 0x00 or 0xFF

! store important values redundantly

– attacking key material

• calculations with carefully modified key material may leak key data

! avoid crypto operations with potentially modified key material (e.g., using CRC)

! store key material encrypted to make the effects of modification unpredictable
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C. Attacks: javacardx.crypto

• javacardx.crypto.KeyEncryption

– methods to enable encrypted key data access to a key implementation

• javacard.security.KeyBuilder

– the key object factory
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C. Attacks: javacardx.crypto

• javacardx.crypto.KeyEncryption

– methods to enable encrypted key data access to a key implementation

• javacard.security.KeyBuilder

– the key object factory

public interface KeyEncryption {

   public Cipher getKeyCipher();

   public void setKeyCipher(Cipher keyCipher);

};
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C. Attacks: javacard.security

• javacardx.crypto.KeyEncryption

– methods to enable encrypted key data access to a key implementation

• javacard.security.KeyBuilder

– the key object factory

public class KeyBuilder {

   public Key buildKey(byte keyType, short keyLength,

                       boolean keyEncryption);

};


